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1
Dynamics of polynomial maps

A simple mechanism can make a chaos. The case of iteration of polynomial
maps is no exception. Indeed an extremely simple raap; 7% + ¢, can
create deep confusion. Understanding of, or, more modestly, an attempt to
understand, such phenomena is the theme of this book.

More precisely, consider a monic polynomial

k—1

P2 =2+aZ + - +ac1z+a

of degreek. ThenP can be considered as a self-mapfand the issue is to
discuss what happens when we applyo a given point iteratively. Set

20=221=P2,...,zn = P(zh-1), ...,

and consider the behavior of the sequefmgy> ; or the orbit ofz. Here, one
might take some stable dependence on the initial vafiee granted. But this

is not true in general, and the set of unstable initial values is, almost always,
incredibly complicated, and nowadays is called a fractal. Moreover, for almost
every such initial value, the behavior is chaotic enough.

First, in 81.1, we give several typical examples of fractal sets caused by
polynomial maps, and explain basic properties of them. Then §1.2 summarizes
local theory near a fixed point of a general holomorphic map.

Turning to quadratic polynomial maps as above, we introduce the Mandel-
brot set, which in itself is a fractal and represents the very interesting family of
quadratic polynomial maps, in §1.3.

As the fundamental tools to measure how complicated the set considered is,
we introduce in §1.4 the Hausdorff measures and the logarithmic capacity, and
give some basic facts about them.

Finally, in 81.5, we define a polynomial-like map, which is one of the
fundamental concepts in the modern theory of complex dynamics, and explain
some basic results.



2 Dynamics of polynomial maps

In this chapter, we explain not only basic facts on the dynamics of polyno-
mials, but also several central issues about complex dynamics. In particular,
we include many important results without proofs. As general references for
those results, we cite books by Beardon (1991), Carleson and Gamelin (1993),
Milnor (1990), and Steinmetz (1993).

1.1 The set of escaping points for a polynomial
1.1.1 Typical examples of polynomials
Fix a monic polynomial

k—1

P2 =2+aZ '+ - +ac1z+a

of degreek > 2, and consider the sequence{&}>° ;, where and in what
follows, we set

P’2) =z PY(2) = P(2),..., P"(2) = P(P"1(2)).
Then for everyz with sufficiently large|z|, we have
Izl < IP@)| < [P?@)| <.

In fact, choose aR > 2 so large thaltP (z)| > |z|¥/2 for everyz with |z| > R.
Then inductively, we see that

R<lzl <122 < |P@| <--- < |P" )| < IP" L2 %/2 < IP"(2)].

Thus for every such, P"(z) tends tox in the Riemann sphef@ = CU{o0}.

Definition We set
Ip = {ze (C‘ lim P"(2) = oo},
n—oo
and call it theset of escaping poinfer P. Also we set
Kp=C-—1p

and call it thefilled Julia setof P. The boundarydp = dKp of Kp is called
the Julia setof P.

Remark Sincek > 2, any polynomial

k—1

P(2) =a + a2+ - +a1z+ax (a#0)

is affine conjugate to a monic polynomial of degilee More precisely, set
A(Z) = wz, wherew is a(k — 1)th root ofag, and we see thaho P o A"1(2)
is a monic polynomial of degrde
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The following example is clear.

Example 1.1.1 Let P(z) = z2. Then we have

lp={lzl >1), Kp={lzZl<1}, Jp={z=1.

Example 1.1.2 Let P(z) = z2 — 2. Then we have
lp=C—[-22, Kp=Jdp=[-22]

where[—2, 2] denotes the intervdk e R | —2 < x < 2}.

Verification SetB(z) = z+ 1/z, and we can take the single valued branch of
B~1fromC —[—2, 2] onto{|z| > 1}. A simple calculation shows th&(z) =

B o Pgp o B~1(2) with Po(2) = 7%. Hence by Example 1.1.1, we see that
containsC — [—2, 2]. On the other hand, itis clear thR{[—2, 2]) = [-2, 2],
and hence the assertions follow.

Recall thatP restricted to {2, 2] is a typical unimodal map which repre-
sents an action that expands the interval to twice its length and then folds it
into two.

In general, Jp has a very complicated shape. Actually, the above examples
are exceptions. We show the variety of the Julia sets by examples.

Remark The reasons why the Julia sets in the examples below have such
shape are not easy, and need several results discussed later. But for the sake of
convenience, we include brief explanations.

We start by clarifying what we consider as fractal sets. There are several
ways to define fractal sets. Self-similarity relates closely to fractal sets. But
there exist so many complicated sets, for which self-similarity is not so clear or
seems to be absent. From a quantitative viewpoint, we may call every simple
curve with Hausdorff dimension, defined in §1.4, greatentha fractal curve.

But we take a looser definition (also see §4.1).

Definition Let E be a closed subset &f without interior. We say thak is a
fractal setif E cannot be represented as a countable union of rectifiable curves.
We say that a domaib in C is afractal domainif the boundaryaD is a
fractal set.
As to fractal sets in the multi-dimensional complex number space, we will
discuss these in Chapters 6-9.
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Even in the case that the Julia detis a simple closed curvep is terribly
complicated except for trivial cases.

To give such examples, we pertu{z) = z2 in Example 1.1.1. That is,
considerP;(z) = % + ¢ with sufficiently smallc. Then simple computations
show that there is a fixed poizt, a solution ofP(z) = z, nearz = 0 and
hence the value of the derivative atis also near to 0. Moreover, we will
show that the structure dip, is circle-like.

Example 1.1.3When|c] is sufficiently small, the Julia sép, of Pc(z) = Z?+c

is a simple closed curve, but has a very complicated shape, called a fractal
circle. See Figure 1.1(a), the Julia setzf+ ¢, ¢ = 0.59- - - +10.43- - -, and
Figure 1.1(b), that o#? + ¢, c = 0.33--- +i0.07- - .

Verification By the corollary to Theorem 1.5.1, each Julia set is a quasicircle.
In particular, it is a simple closed curve. Theorem 1.4.7 implies that it is a
fractal set.

(®)

Fig. 1.1. Jordan curves as Julia sets

Definition We say that a compact sét in Cis locally connectedf, for
everyzg € K and every neighborhoad of z5, U N K contains a connected
neighborhood ofg in K.

A connected and locally connected compact set is arcwise connected. For
some conditions on local connectedness, see 84.4.
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Example 1.1.4 Set
. 1
E= {x+|y‘0<x < 1,y=sm;},
and the closure oE is not locally connected.

Definition We call a compact sé€ adendriteif K is a connected and locally
connected compact set without interior whose compler@erik is connected.

Example 1.1.5A typical example of a dendrite is the (filled) Julia serd#-i.
As other examples, we cite in Figure 1.2 the (filled) Julia sets of

(@ z2+c, ceR, cB+2c2+2c+2=0,
(b) 2+c, c=vo—1, 0®*+w+1=0.

Verification These Julia sets are connected by Theorem 1.1.4, for the orbit
of the unique critical value 0 is preperiodic and hence bounded. They have
no interior points, which can be shown as in the proof of Theorem 4.2.18.

Further, since they are subhyperbolic, defined in 84.4, the Julia sets are locally
connected.

When the Julia set is a dendrite, it coincides with the filled Julia set. There is
another typical case that these are coincident with each other. It is the case that
the Julia set of a polynomial is a Cantor set. We will define and discuss Cantor
sets in 81.4. Here we temporarily call a && Cantor set iE has no isolated
points, and every connected componentEafonsists of a single point. Then
it is easy to see that such &has uncountably many connected components.

By definition, if a closed set without interior has uncountably many con-
nected components, then it is a fractal set. We give in Figure 1.3 the Julia sets
of

(@ z2+c, ¢=038-.-+i0.22...,
(b) Z2+c, c=-082.--+i0.33 ..

These Julia sets are Cantor sets by Theorem 1.1.6, far éne outside of
the Mandelbrot set defined in 81.3.

In the case of polynomialB of degree greater than 2, the filled Julia set may
have interior points even if it has uncountably many connected components.
We give the following example.

Example 1.1.6 The Julia set ofP(z) = 7% + az with a = 0.038+ i1.95
consists of uncountably many components and countably many components
have interior points. See Figure 1.4.
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MW

(b)

Fig. 1.2. Dendrites as Julia sets

Verification Since Theorem 2.3.6 shows that Julia sets are perfect sets, a dis-
connected Julia set consists of uncountably many components. To see the filled
Julia set ofP has countably many connected components which have interior
points, we need only pursue the orbit of the finite critical poihtg—a/3, as

is seen from the fact proved in Chapter 2. We remark that the shape of each
component depends on the polynomial induced by a suitable renormalization,
which is defined in §1.5.
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Fig. 1.3. Cantor sets as Julia sets

1.1.2 Basic properties of the filled Julia set

We have seen that the Julia set may have incredibly varied shapes even re-
stricted to simple polynomial maps. One purpose of this book is to discuss
such variety of shapes and characters of the Julia sets, though we stress expla-
nation of the unified nature which a fairly large class of complex dynamics are
equipped with.

We start with the following elementary fact.

Theorem 1.1.1 Let P(z) be a polynomial of degree not less thanThen the
filled Julia setk p is a non-empty compact set.

Moreover,| p is a domain, that is a connected open set.

Remark WhenP(z) = z+ c (c # 0), itis clear thatkp is empty. The case
of a general linear map is left to the reader.



8 Dynamics of polynomial maps

A

Fig. 1.4. Disconnected Julia set with non-empty interior

Proof of theoremSince the degree @ is not less than 2P always has a fixed
point, which belongs t& p by definition. Hence&K p is non-empty.

Next, as noted before, setting = {z € C||z| > R} for a sufficiently
large R, we haveP(V) ¢ V andV c Ip. On the other hand, for every
Z0 € |p, the orbit element$"(zg) tend toco, and hence there is ad such
that PN (zg) € V. Thus we conclude that

o0

Ip = JPH V), (1.1)
n=1
which in particular implies thatp is an open set and th#p is a bounded
closed set.

Finally, if there exists a connected componentBf')~1(V) disjoint from
V, then it should be bounded, foP")~1(V) containsV. This contradicts
the maximal principle, and hence we conclude ttaf)~1(V) is a domain
containingV. Thus the above equation shows the assertion. ]

The equation (1.1) also implies the following.

Theorem 1.1.2 (Complete invariance)Let P(z) be a polynomial of degree
not less tharR. Then the setsp, Kp and Jp are completely invariant under
the action byP, i.e., lettingE be one of these sets, we have

P(E)=PYE)=E.
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Proof By (1.1), we see thaP~1(Ip) = Ip. Since P(PM1(V)) =
(P"1~1(v), we also have tha®(1p) = Ip. Thuslp is completely invariant,
and so is the complemektp. SinceP is a continuous open magp is also
completely invariant. ]

Theorem 1.1.2 implies that every point i§f> has a bounded orbit. Hence
we can characterizié p as the set of points with bounded orbits.

Definition A closed se€ in C is calledperfectif E has no isolated points.
AdomainD in Cis simply connecteif the complemen@— D is connected.

Theorem 1.1.3 Let P(2) be a polynomial of degree not less thanThen the
filled Julia setKp is a perfect set.

Moreover, every connected component of the interiak pfis simply con-
nected.

Proof Suppose that there is an isolated painbf Kp. Then we can draw a
simple closed curv€ in |p such that the intersection of the interdf of C
in C andKp consists only of the poirdp.

Now take such & as in the proof of Theorem 1.1.1. Then by (1.1), we can
find N such thatPN(C) ¢ V. SincePN(zp) is not contained in/, PN (W)
should containC — V. Then complete invariance ¢€p means thakp =
{zo0}. In particular,P~1(zg) = {2z}, and henceP(z) should have the form
a(z — zp)* + zo. But thenzg should belong to the interior df p, which is a
contradiction.

Next, if there were a connected component of the interid¢ pfwhich were
not simply connected, thelp U Jp = Ip would not be connected, which
contradicts Theorem 1.1.1. O

Remark For everyz € |p, the closure oUﬁozl(P”)*l(z) containsJp, and
for everyz € Jp, we have

UPm—t@ = .
n=1

These facts follows from the non-normality @"} on the Julia set (see The-
orem 2.3.4), and give one of the standard ways to draw the Julia set.

Definition The solutions ofP’(z) = 0 are callectritical pointsof P(z). We
denote byCp the set of all critical points oP(z), and call it thecritical setof
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P(2):
Cp={zeC|P(2)=0}.

Now whetherl p U {oo} is simply connected or not depends on the location
of the critical set.

Theorem 1.1.4 Let P(z) be a polynomial of degree not less thanThen the
filled Julia setK p is connected if and only ife N Cp = @.

Proof As in the proof of Theorem 1.1.1, fiR so thatV = {|z] > R} is
contained inlp.

First, suppose thatp N Cp is the empty set. The®" gives a smooth
k"-sheeted covering of, = (P™)~1(V) ontoV, wherek is the degree oP.
SinceV U {oo} is simply connected, so is evelg U {oo}. Hence the union
Ip U {oo} of increasing domaingy, U {oo} is simply connected.

Next suppose thatp N Cp is not empty, and leN be the minimum oh
such thatV,, N Cp # @. Then applying Lemma 1.1.5 below to the proper
holomorphic magP : (VN — Vn_1) — (Vn_1— Vn_2), we see thaVy is not
simply connected. Hendép is not connected. O

Lemma 1.1.5 (Riemann—-Hurwitz formula for domains)Let D1 and D, be
domains inC whose boundaries consist of a finite number of simple closed
curves. Letf (z) be a proper holomorphic map &1 onto D,. Then:

(i) Everyz e D3 has the same numbkrof preimages including multiplicity.
(i) Denote byN the number of critical points of in D1 including multiplic-
ity. Then

(2—d1) =k(2—-d2) — N,
whered; is the number the boundary component®gf
In particular, when both thd®; are simply connected;, has at mosk — 1
critical points.

The numbek in the lemma is called the degree bf

Proof The first assertion follows sincé is a proper open map. The second
assertion follows by applying Euler’s formula to suitable triangulationd pf
O

A typical example of disconnectddp is those such as in Figure 1.3. We
say that a compact sét is totally disconnected every connected component
of E consists of a single point.
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Theorem 1.1.6 Let P(2) be a polynomial of degree not less than If the
setIp of escaping points containSp, then Kp is totally disconnected. In
particular, Kp = Jp.

Proof The assumption implies that the forward orbit
oo
ct(P)=JP"Cp
n=1

of Cp accumulates only teo. Hence there is a simple closed cu®@esuch
that the interioW of C containsKp and the exterio = C — W contains
C*(P). Asin the proof of Theorem 1.1.1, we see that= (32, (P™~1(V),
and hencePN(V U Cp) c V for a sufficiently largeN. This implies that
(PNY~1 haskN single valued holomorphic branches W which we denote
by {h;j }'j‘il. Then the elements éf; = {U; = hj(W)} are pairwise disjoint,
and eachU; containskN imagesit = {(Ujk = hj(Uk)}Eil of them. Induc-
tively, we can define the sét, of domains for every positive integér and
Kp = Moy Ue.

Thus it suffices to show that, for any sequence of dom&ig) € U,
such thatU (¢) c U (¢ — 1), the intersectiorE = (1,2, U (¢) consists of a
single point. For this purpose, I& = {1 < |z| < m;} be the ring domain
conformally equivalent toV — U_J for every j. We call the quantity log;
the modulusof Rj. Setm = minj m;. Then since every (¢ — 1) — U () is
conformally equivalent to one of thR;, it contains a ring domain conformally
equivalent to{1 < |z| < m}.

Here the crucial fact is the following subadditivity of the moduli of ring
domains. Suppose that a ring dom&irtontains disjoint ring domains; and
S essentially, i.e., eacl; separate@ — R. Let logm and logm; be the
moduli of RandS;. Then

logm > logm; + logmy.

This is a direct consequence of the extremal length characterization of the
modulus.

ThusW — U (¢) contains essentially a ring domain with modulieg m.
HenceW — E contains essentially a ring domain with arbitrarily large modulus.
If E contains more than two points, this is impossible. O

Remark Inthe case thatp containCp, the proof of Theorem 1.1.6 indicates
how to describe the dynamics ¢tp = Jp symbolically.
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Take thespace of sequenceslosymbols
Sk ={01,...., k=17 ={(mo,my,...) | mj €{0,1,....k—1}},
whereZ* is the set of non-negative integers. We eqgHipwith the product
topology. In other words, we take the topology so that the injection
S .
(Mo, my,...) — Y 2mj(2k— 1)~ 11

j=0

becomes a homeomorphism irito
Then lettingk be the degree oP, we can identifyJp with ¥y so that the
dynamics ofP on Jp equals the canonicahift operator

o((mg, My, ...)) = (M1, My, ...)

on X. Further see §3.2.1 and §7.4.

1.2 Local behavior near a fixed point
1.2.1 Schbder equation fora with |A| < 1

The behavior of the dynamics of a polynomR{z) can be fairly well under-
stood at least near a fixed pointBfz). We gather in this subsection classical
and basic facts on local behavior of a general holomorphic function near a
fixed point. First,co is a fixed point ofP(z) considered as a holomorphic
endomorphism of, and has a distinguished character.

Theorem 1.2.1 (Bdttcher) Fix a monic polynomialP(z) of degreek > 2.
Then for a sufficiently largdR, there exists a conformal mafp(z) of V =
{|z] > R} into C which has a form

#(2) :bz+bo+%+-~-
and satisfies
o (P(2) = {p@) . (1.2)

Moreover, such ap(z) is uniquely determined up to multiplication by a
(k — Dth root of 1.

We call such a functiog (z) as in the above theorenBéttcher functiorfor
P atoo. Also see §7.3.
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Proof We may assume th& (V) c V, and hence there exists a single valued
holomorphic branchy (z) of
P(2)
00—
such that lim_. o ¥(2) = 0. SinceP(z) = z expy (z), we see inductively
that

P (2) = 2" explk" Yy (2) + - - - + Y (P L(2))}.

Hence we can take
1 1 n—-1
dn(2) = zexp Ellf(Z)erJrFl/f(P (2))

as a branch of thk"th root of P"(z).
Now we may assume thakt(z) is bounded or/. Then

o0

Y kI (PI7k2)

=1

converges uniformly oW, and hence so does the sequefisgz)}. The limit
¢ (2) of pn(2) is holomorphic orV and satisfies equation (1.2), fox(P(2)) =
{pn+1(2)}%. Sinceg(z) is injective nearo, we conclude with the first asser-
tion. The second assertion follows from (1.2). O

In general, a Bttcher function cannot be continued analytically to the whole
of Ip. Also see the remark below. But we have the following.
Proposition 1.2.2Let¢ (2) be a Bdttcher function for a monic polynomi&l(z)
of degreek > 2, and set
9(2) = loglg(2)|.

Theng(z) can be extended to a harmonic function on the wholigof
Moreover, setg(z) = O for everyz € Kp. Theng(z) is a continuous
subharmonic function of.

The functiong(z) in the proposition is the Green function bpU {oo} with
pole oo, which will be defined in §1.4.3.

Proof Sincelp = Uﬁozl(P”)*l(V), we extendg(z) to the whole oflp by
setting

1
9(2) = EQ(P"(Z))

if ze (PM~1(V). Thisg(z) is well defined by (1.2) and clearly harmonic.
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Next, setA = max,.y_pv) 9(2), and take any neighborhodtf of Kp.
Then

PYHTVNW=g

implies that
g2 <k NA  (zew).

Hence we have the second assertion. O

Remark It is known as Sibony’s theorem that this continuous subharmonic
functiong(z) on C is actually Hlder continuous.

WhenCp is contained inKp, then any Bttcher functionp (z) can be ex-
tended to a conformal map of onto{|z| > 1}. In general, set

M = max{g(zo) | zo € Cp};

then we can extend(z) to a conformal map ofz € C | g(z2) > M}.

Indeed, ifr > M, then{g(z) = r} is a simple closed curve, and hence we
can find a (multi-valued) conjugate harmonic funct@tiz) of g(z) such that
G(2) = exp(g(2)+ig*(2)) is single valued oKz| > r}. Choosing the additive
constant ofy*(z) so thatG(z) = ¢ (2) nearoo, we conclude with the assertion.
In particular, ifCp C Kp, Proposition 1.2.2 implies th&(z) is a conformal
map oflp onto{|z| > 1}.

Now we turn to the case of a finite fixed point, which we assume to be 0 in
the rest of this section. We can generalizitBher's theorem as follows.

Theorem 1.2.3 Let f () be a holomorphic function in a neighborhood of the
origin with the Taylor expansion

f(2) = o + 1t 4. (e #£0).
Then there exist a neighborhoddl of the origin and a conformal magp :
U — C fixing the origin and satisfying
¢(f(2) = {p@)".

Moreover, such & is uniquely determined up to multiplication byla—1)th
root of 1.

Again, we call such & (z) aBbttcher functiorfor f (at 0). The proof is the
same as that of Theorem 1.2.1 and hence omitted.

Remark We can derive Theorem 1.2.1 from Theorem 1.2.3 by taking the
conjugate byT (z) = 1/z
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Note that Theorem 1.2.3 treats the case of a fixed poi@tdrfor a monic
polynomial P. When a given fixed point does not belong@@, or more
generally, when a holomorphic functidn(z) in a neighborhood of the origin
fixes the origin and satisfie§ (0) # 0, we have the Taylor expansion

f(2)=rz+Z%+--- (L#£0).
We call thisx themultiplier of f at the fixed point 0. The case that= 0 has
been treated in Theorem 1.2.3.
Theorem 1.2.4 (Koenigs)Suppose that a functioh(z) holomorphic near the
origin has the Taylor expansion
f(2)=rz+CZ%+--- (O<]Al <.

Then there are a neighborhoddl of the origin and a conformal magp(z) of
U such thatp (0) = 0 and that

pof(2)=rp(2 (zeU). (1.3)
Here, ¢ (2) is unique up to multiplicative constants.

Definition We call the equation (1.3) thechibder equatiorfor f. When the
Schibder equation has a solution, then we say thatlinearizableat O.

Proof of theoremSet
(@ =2"1"2)
for everyn and we have
¢no @ =21""t"@) = hpni1(2).
Fix any such that? < |A| < n < 1, and we can choose a positiveo smalll
that
1f@] <nlzl and |f(@) -z <clz?
on{|z| < 8}, wherec = |co| + 1. Further, sep = %/|A| (< 1), and we obtain
that

lpn+1(2) — dn(D)] (@) — Af"@)) < AT e £ (2))?

—1),,2
oAl HzZ

IA

Thus¢n(2) converges to

¢ =1 + Y _{$n11(2) — $n(D)

n=1
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uniformly on{|z| < &}, and itis clear thad (z) satisfies the Schder equation.
The uniqueness follows by comparing the coefficients. [l

Remark When|ir| > 1, we can show the same assertion by considering the
inverse function.

1.2.2 Schbder equation fora with |A] =1

In the case thaf.| = 1, the situation is very complicated. We gather several
basic facts without proofs, which will be found in the books referred to before.
First, for almost every such, the corresponding Sabdler equation has a

solution.

Theorem 1.2.5 (Siegel)For almost every. on the unit circle{|z| = 1}, every
function f (2) represented by a convergent power series

f(2) = Az+ 22+ -

is linearizable atQ, i.e., there exist a neighborhodd of the origin and a
conformal mapp () such that

() =102 (zel).

Remark Actually, Siegel showed that, ife R — QQ and isDiophantine i.e.,
there are constants> 0 andb < +oo such that

C

t-5lz g

q

>

‘ p

for every integemp and positive integen, then f (z) with » = €27t is lineariz-
able at 0.

Here, if we takeb > 2, then the total length of the set of hon-Diophantine
numbers in [01] is not greater thalijgozN 2cg* P, which is the total length
of intervals{t € [0, 1] | It — (p/q)| < cqP} with g > N for everyN, and
which tends to 0 abl — +oo. Hence almost every number is Diophantine.

On the other hand, at evergtionally indifferentfixed point, that is every
fixed point with a multiplierr = €'t with t € Q, the function is not
linearizable at 0. In particulais corresponding to the non-linearizable case
are dense in the unit circle.
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Theorem 1.2.6 (Petal theorem of Leau and Fatou)or every functionf (z)
represented by a convergent power series

f(2) =2+ Cpr1zP™ +--- (Cpy1#0)
at0, there are2p domains{U;, V; }J‘-’:l such that
(i) forU =UJ_, U,

f(U) c U U0}, f"(U) = {0},
n=1

and forV = Ule Vi, (f]v)~Lis univalent onv, and
(FvtV) cvufon [((Flv™"(V) = (0},
n=1

(i) domains{U; }Jpzl are pairwise disjoint and so argV; }jP:l’ and
(iii) the domain{0} UU U V is a neighborhood db.

Definition We call a component df) satisfying condition (i) arattracting
petalof f(z) at the origin. Also, an attracting petal of |v)~1(z) such asvk
in Theorem 1.2.6 is calledrapelling petalof f.

Remark When f has the form

f(2) =2z+cprzP™ 4+ (cpr1 #0)

with a primitive mth root of unity», considerf ™(z), and we have a similar
assertion as above. In particuldr(z) has a family of attracting petals, di-
vides it into invariant subfamilies and permutes the elements of each subfamily
cyclically.

Thus, whem. = €™t with a rationalt, the Schoder equation forf at the
origin has no solution.

Example 1.2.1Let
f(2) =z+ 2%+ (c2 # 0)
and definel (z) = —1/(c22). Further we set

Qy = {/lmzl > 2c — Rez},
Q_ = {|lmz > 2c+ Rez},

with a sufficiently largec. ThenT (24) is an attracting petal off (z) at the
origin and T (R2_) is a repelling petal off (z) at the origin.
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Verification By taking a conjugate by (z), we have
92 =TofoT 2 =z+1+%+~-~
We choose so that
92 —z-1] <1/v2

if |z| > c. Theng(2) is nearly a translation neab. Hence a simple computa-
tion shows thag(24) C Q4 U {oco}, andT (24) is an attracting petal of (2)
at the origin. Similarly, we see that(2_) is a repelling petal off (z) at the
origin.

As examples of quadratic polynomiat$ + ¢ having attracting petals, we
show as Figure 1.5 the cases ttejtd = 1/4 and p) c = 0.31--- +1i0.03- - -.

@)

Fig. 1.5. Julia sets with parabolic basins

Remark The explanation in the previous example indicates that, for any
attracting petalJ of f(z), there exists a conformal maf(z) of U which
satisfies thé\bel equation

p(f(2)=90@2+1 (zel).
We call such ap(z) aFatou functiorfor the attracting petdl .

As another typical case where the Suder equation has no solutions, we
cite the following.



1.2 Local behavior near a fixed point 19
Theorem 1.2.7 (Cremer) For everya with |1| = 1, set
Q:(2) = Az + 7°.

Then the set of such that the Sckider equation foiQ, has no solutions is a
generic set, that is one which can be represented as the intersection of at most
countably many open dense subsetg$|in= 1}.

Definition For a function f (z) holomorphic neazg which has the Taylor
expansion

f(=20+1z-20)+C(2—-20)°+ - (=€ teR-Q),
7g is called anirrationally indifferentfixed point. Further, we say thag is a

Cremer pointof f (z) if the Schibder equation forf (z) atzg has no solutions.

Corollary The set of. such thatQ; has a Cremer point is dense in the unit
circle.

Remark Suppose that 0 is a fixed point of a polynomiawith the multiplier
A with [A| = 1. Then it is easy to see that,Hfis linearizable at 0, then 0 does
not belong toJp. The converse is also true. See Theorem 2.1.9.

Finally, we note the relation between Cremer points and the continued frac-
tional expansion in the case of quadratic polynomials.
Definition Lett € R — Q, and consider the continued fractional expansion

1
t=

ai +
az +

1
ag+

which induces the sequenéen}; > ; of the denominators of the rational ap-
proximation oft, i.e. {g,} are determined by the following equations induc-
tively:

Go=101=a1,...,0n+1 =0n-1+ Onh@n+1, ...

We say that is aBrjuno numbeif

o0

1
Z q— loggnt1 < o0o.

n=1 n
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Theorem 1.2.8 (Brjuno—Yoccoz)Leti = et witht ¢ R—Q, andQ;.(2) =
1z + z2. Then the Sclirder equation forQ;, has a solution near the origin if
and only ift is a Brjuno number.

In generalt is a Brjuno number if and only if every functioh(z) repre-
sented by a convergent power series

f(2) =Az+CZ2 + - -

is linearizable at 0. For the details, see Yoccoz (1996).

1.3 Quadratic polynomials and the Mandelbrot set

In the case of quadratic polynomias(z) = z% + ¢, Theorem 1.1.4 means
thatK p, is connected if and only if the orbit of O is bounded. So we define

M = {ceC|{P]0)}2, is abounded sequerice

and call it theMandelbrot setSee Figure 1.6.

Fig. 1.6. Mandelbrot set



